5F &8

Optimization Theory and Methods ., i @) 1ovensen

BMulfE  kejiwei@tongji.edu.cn
https://kejiwei.github.io/

CAMEA \® ppcsB  EQUIS

sEsREMBAxEAE M ACCREDITED ACCREDITED



Chapter 11. Multi-Stage Games 3) il F 22 5

&2 TONGJISEM

m Multi-Stage Game With Perfect Information
m Two-Stage Quantity Competition

= Empty Threats

m Backward Induction

m Subgame Perfect PSNE

m Strategic Investment Example

]
CAMEA LN AAcSE  EQUIS

sEsmreMBAzE A E M




11. Multi-Stage Games AN il i £

L Multi-Stage Game with Perfect Information &/ TONGJISEM

m A multi-stage game with perfect information is one where:

1) All players know the actions chosen at all previous stages
0,1,2,..,k—1, when choosing their actions at stage k.

2) In each stage k, some players take an action.

3) All players who take an action in a particular stage take actions
simultaneously in that stage.

m Thus, when a player takes an action in stage k, it is aware of all the
actions taken by all players in the previous stages, but is not aware of
the actions taken by other players in stage k.

m Important: A pure strategy is no longer the same as an action.

m A pure strategy is now a full contingency plan for all possible
combinations of actions by all players at all previous stages.
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L Two-Stage Quantity Competition & TONGJISEM
Consider a 2 player game. Similar to the Cournot case, the actions by

the players are the choices of the output levels, g; for player 1 and g,
for player 2.

m We assume that at first player 1 chooses g, then player 2 chooses g,.
m Thus player 2 knows the value of g, before deciding g,. So player 1’s
strategy is just a value of g, while player 2’s strategy is a mapping

giving one value of g, for each value of g;,.

mlet ¢ = 0 (for simplicity) and p(q) = 12 — q. So player i’s payoff is
u;(q1,q2) = [12 — (g1 + q2)] * q;.

m S0 a PSNE of this game should include one number, g,, and a mapping
that gives one value of q, for each value of q;.

= How should we find this PSNE?
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L Stackelberg Equilibrium & TONGJI SEM

m The easy part is to compute the best g, value for each g, value.

m First order conditions give: 0 = % lu,(q1,92)] = % 112 — (g4 + qz)]qz] =
2 2
12 — g1 — 2q5.
mS0, g, =6 — %. Thus, for any value of g; chosen by player 1, player 2 will

observe that and accordingly pick a g, value equal to 6 — %.
m So the equilibrium payoff of player 1 is given by: u,(qq,q9,) = [12 —

(CI1+C12)]*CI1=[12—(511"‘6_%)]*511:[ —%]*Ch-

m S0 the first order conditions give: 0 = % [6 — %] * ql] =6—q,.
1
m So the PSNE is given by: g;* = 6 and g,*(q) = 6 — %.

m This PSNE is called a Stackelberg Equilibrium.
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L Other PSNEs of 2-Stage Quantity Competition Game &2 TONGJISEM

m However, there are other PSNEs of this game!!

m For example, what if player 2 decides to have a strategy where it will pick a
constant value g, = g,° for any value g, picked by player 1. In other words,
players 2 does not change its strategy in response to the observed value of

qi-
m In this case, u4(qy, qz) =112 — (q; + qz)] . So 1%t order conditions for
player 1 give 0 = — [u1(CI1; q2)] = [[12 — (CI1 + q2)] * CI1 =12 - 2q, — q5.

m Since g, does not depend on q,, we get, 0= % lu,(q1,9,)] = 12 —
2

aClz
(g1 +92)] % qz] =12 - CI1 — 2q;.
C
mSo, wegetqg,"=6— and q," =6 — " . Solving these simultaneously, we
get q," = q" = 4.
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TONGJI SEM

L Empty Threat

m In this new PSNE, player 1 assumes that player 2 will actually pick the
exact same value of output g, even if player 1 picks a different value of g,
(other than 4).

m Under this assumption, the best strategy for player 1 is to pick output g; =
4. But this is fully reliant on the assumption that player 1 actually believes
that if it produces another level of output (e.g., g; = 6), player 2 will still
play g, = 4 rather than playing g, = 3 which is the optimal response of
player 2.

m In other words, player 2 threatens to player 1 that it will produce 4 units
even though it is not optimal to player 2. This is what we call as empty
threat. Note that g, = 4 is optimal for player 2 only when player 1
produces q; = 4. For all other levels of g4, it is suboptimal.

m The PSNE on the previous slide assumes that player 1 will produce g; = 4
because it believes in player 2’s threat.
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S Empty Threat(cont.) &2 TONGJISEM

m By assuming that player 1 will produce g, = 4, the response by player 2
to other levels of player 1 output does not matter.

m Yet, the very assumption that player 1 will produce g, = 4 is dependent
on player 2 sticking to the strategy of always producing g, = 4 no
matter what g, value is.

m As a result of the empty threat, neither player has a reason to deviate
and hence this is a PSNE.

m However, this PSNE is highly suspect in terms of its portrayal of reality,
because player 1 should be able to call player 2’s “bluff” at some point.

m Hence, not all PSNEs are reasonable for a multi-stage game.

m We need a method to understand which equilibria are reasonable and
which aren’t.
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L Backward Induction &2 TONGJISEM

m Consider how we calculated the Stackelberg equilibrium of the two-
stage quantity competition game.

m Calculating the best strategy for player 2 in the second stage was
relatively straightforward, because once g, was fixed, calculation of
optimal g,*, as a function of g;, was easy.

m Next we calculated the optimal g,.

m So we started from the last stage of the game and worked backward to
calculate the equilibrium of a multi-stage game.

= We will now extend the same idea to a general multi-stage game. This
method of finding an equilibrium of a multi-stage game is called
backward induction.

m For simplicity, we will only consider a situation where only one player
takes an action at each stage of the game.
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4 Backward Induction (cont.) & TONGJISEM

m Let h"* denote the set of actions actually taken by all players at all
stages prior to stage k. Backward Induction algorithm works as follows:
1) The algorithm begins by determining the optimal choices in the final

stage K for each history h¥. This is determined by finding the action
that maximizes the payoff of the player taking action at stage K
contingent on a history h¥.

2) Then it works back to stage K — 1 and determines the optimal action
for the player taking action in stage K — 1, given that the player
taking action in stage K with history h¥ will take the action that we
determined previously.

3) We repeat this process one-by-one for stages K — 2, K — 3, .., 2, 1.
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L Subgame Perfection &2/ TONGJISEM

m This process yields a PSNE where each player’s actions are optimal for
each possible action history (even those not taken).

m In other words, the problem of empty threats does not occur.

m This pure strategy Nash equilibrium is called a subgame perfect pure
strategy Nash equilibrium.

m The idea of subgame perfection is not merely restricted to the multi-
stage games with only one player taking action at each stage.

= We will now look at an example of subgame perfect PSNE for a more
general multi-stage game where one or more players can take actions
at each stage.
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L Strategic Investment Example &/ TONGJISEM
m Problem: Firm 1 and firm 2 both have a production cost of 2 per unit.

Firm 1 can install a new technology which will make the production cost
0 per unit. But installing the technology will cost f. Firm 2 will observe
whether or not firm 1 has installed the new technology. Then the two
firms will simultaneously decide their outputs (q; and g,). Assume that
the price as a function of demand is p(q{,9,) = 14 — (q; + q,). Find the
subgame perfect PSNE of this game.

m Solution: The payoff functions of the two players are:

.
(12—(q1 + q2)) *q1  -.if it doesn't invest

o u ) _— <
1(91,92) (14 — (g, + Clz)) *qq1 — f ...if invests in new tech
\

*and u,(q1,q2) = (12 = (¢4 + q2)) * q2.
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L Strategic Investment Example (cont.) 2 TONGIISEM

= Now we will work backward to find a subgame perfect PSNE.
m If firm 1 does not invest in new technology, then we have the basic

Cournot game that we saw earlier. The PSNE is obtained by solving the

following two FOCs simultaneously: g; = 6 — % and g, = 6 — %. As found

earlier, the unique PSNE is at (q4,9,) = (4,4). The payoff for each firm is
16 each.

m On the other hand, if firm 1 does invest in the new technology, then we
qz

will solve the following two FOCs simultaneously: q; = 7 — - and g, = 6 —
%. We get, (q4,9,) = (1?61?0) Payoff of firm 1 is % — f. So firm 1 should

make the investment if % —f>16,1.e.,if f < 1—;2

m For example, if f = 0 then obviously firm 1 should invest in new
technology, and if f = 15 then it shouldn’t invest.
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Objective :

Key Concepts :
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